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SUMMARY 

In this article, a semi-analytical theory of general planetary per- 
turbations, which is somewhat akin to Hill 's  theory, is developed. In 
both methods the first  order perturbations coincide, but the theories of 
perturbations of higher orders are different. The inconveniences of 
Hill 's  method, namely, the triple integral in the perturbations of the 
radius vector and the redundant constant of integration, do not appear 
here. The short and the long period terms containing the squafes of 
the small divisors are localized and combined together. The existence 
of such a direct way of separating these important terms from the re- 
maining perturbations constitutes a significant characteristic of a plan- 
etary theory. The form of decomposition of perturbations as used in 
this article leads to a system of differential equations easily integrable 
by Hill 's  procedure and to a symmetrical scheme for the computation 
of perturbations of higher orders. 
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ON A MODIFICATION OF HILL'S METHOD OF 
GENERAL PLANETARY PERTURBATIONS 

bY 
Peter Musen 

Goddard Space Flight Center 

INTRODUCTION 

In this article a numerical theory of general planetary perturbations is developed. The per- 
turbations a r e  obtained in the standard form of series containing the periodic, the secular, and 
the mixed terms. The coefficients of terms are numerical; they a r e  obtained by double harmonic 
analysis as applied to the force components, and subsequent integration. 
of perturbations in the coordinates escapes the inconveniences of the numerical theory in the 
elements; for example, since the eccentricity and the sine of the inclination do not appear as 
divisors in the differential equations, no numerical difficulties ar ise  in the case of nearly 
circular orbits o r  lowly inclined orbits. 

The numerical theory 

The method presented here is somewhat akin to Hill's method (Reference l), at least where 
the first order perturbations a r e  concerned; in both methods the first order perturbations coincide. 
The theories of perturbations of higher orders in both methods are different. 

We determine the perturbations in rectangular coordinates directly without using the pertur- 
bations in polar coordinates as an intermediary means, as is done in Hill 's  method. Some other 
inconveniences a r e  removed in the theory presented here: The triple integral and the seventh 
constant of integration so  peculiar to Hill's method do not appear; the components of perturba- 
tions along the radius vector a r e  determined in a more direct manner; and the difficulties as- 
sociated with determining the redundant constant of integration vanish. 

In Hill's method the undisturbed true anomaly is taken as the independent variable. Such a 
choice causes numerous inconveniences i f  the perturbations in the motion of the disturbing body 
are also to be taken into account. For this reason the universal variable, time, is used in our 
exposition. 

Since the advent of electronic machines, general perturbation theories can successfully com - 
Pete with numerical integration procedures. 
recently developed by Clemence (References 2 and 3) brilliantly confirms this statement. The 
reference ellipse representing the undisturbed motion can be chosen in a variety of ways. The 
only restriction imposed is that the difference between the disturbed and undisturbed motions be 

The theory of Mars in Hansen's coordinates 

I small, of the order of the perturbations. 
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In the article by Musen and Carpenter (Reference 4) a decomposition of the perturbations in 
the position vector along t, 5, and z was suggested. In the present work we suggest a decomposi- 
tion along Yo, a x  Yo, and 2. This form of decomposition leads to a more compact and more sym- 
metrical scheme than the author's previous scheme for developing perturbations of higher order. 

BASIC DIFFERENTIAL EQUATIONS 

. I  

The equation of the motion of the planet m as referred to the rotating undisturbed frame Y o ,  
Z X  Yo, has the form* 

Substituting 

into Equation 1, introducing the differential operator 

and taking the equatian 

into account, we can rewrite Equation 1 in the form 

'Notations are defined in Appendix A. 
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In applying the operators V or  V',  we consider every function as a function of 
the perturbations 67 and Si." are considered as relative constants. The operator accomplishes 
the development of Equation 3 into a power ser ies  with respect to the perturbations. 

and ;' only; and 

Decomposing 8'; along the axes To, Z X  70,  and putting 

we have in the relative motion 

Substituting Equations 4 through 6 into 2, we obtain 

where we put 

We shall make use of the standard method of developing the Perturbations into power ser ies  
with respect to the disturbing mass and put 

-. -I - -  rK - & T o  + x R x  To + c K R ,  

3 



7 )  = 77, + 772 + 773 + * . -  ' 

-+ 
where Y,, e,, 1, CK, F, are of the order ~ i n m ' .  

In the previous article by Musen and Carpenter (Reference 4), on the basis of the formula 

O E D  = 0 + [;, . VV+T1'  - 0' v] 

+ [(;, .vv+;;,' 0 ' 0 )  + - 0 t Y l '  * V')(T2 * 0+;,' . 0 ' )v  

1 
.L v+T;,' . ... 

it was found that 

+ T1 * vvfl + Yl' * V'00 , 

1 + [( T2 * vvfl + ;; * 0' VR)  + 2 ( 2 ,  * v t ;;,' 0') 2 001 . 
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By substituting 

4 
4 - -  

r ,  - E ,  ro + 7 ,  R x Y O  + 5, G 

and 

into Equation 13, we deduce a compact expression for G2: 

Substituting Equations 10 and 11 into Equations 7 through 9, we obtain the equations 

d2 5, 

dt  

where 

which are of the same form as Equations 7 through 9. Thus, our problem now is to integrate the 
variational equations of the form 7-9 with the right sides known. 

5 



INTEGRATION PROCEDURE 

We shall make use of the substitution 

7) = * ! ( ~ - 2 ~ ) d t ,  . (16) 

5 = 5 ,  (17) 

which reduces Equations 7 through 9 to the form integrable by Hill’s procedure. Substituting 
expressions 15 and 16 into 7, and making use of the relation 

we obtain 

d Z u  p2 1 dr dw - p 2 E  

d t 2  r 
- + J ( U - 2 w ) + r z d t  - 7 -  

From Equations 15 and 16, we have 

Differentiating Equation 19 and taking 8 into consideration, we obtain 

- -  dw - & 
dt fl 

and 

w = K, + dt . 

where the integral sign represents the integral obtained in a formal manner; K, is the constant 
of integration. 

Taking Equations 20, 21, and the equation 
. .  

_ -  dr p e s i n f  
dt  - 
- 
fi 

6 



into account, we obtain from Equation 18: 

2 d2 ( u - 2 ~ ~ )  + > ( u - x 3 )  P 2  = < ( , - T ~ ) + ; ? ; J e d t .  re  s i n  f 
4- 

The last equation can be integrated by using Hill's procedure, and we have 

r 
u = X, + K, a cos f + K, a s i n f  

+\$(+- p e s i n  f H)rr s i n ( f -  f) dt  

2p2 rH 
s i n  (7- f )  dt  dt  , 

where K ~ ,  K, are constants of integration and T, 
the integration is completed, they a r e  replaced by r and f .  

a r e  considered as temporary constants; after 

The double integral in Equation 22 can be simplified through integration by parts, and we 
obtain 

(23 1 
s i n  ( 7 - f )  dt  2p2 rH dt  = 1-z 2p rH dt  - JT 2p TrH [,os (7- f) + e cos T ]  dt . 

Taking this las t  relation into consideration, we deduce from Equation 22 after some easy 
transformations 

u = 2 ~ ~ + ~ ~ ~ c o s f + ~ , ~ s i n f + ~ ,  (24) 

in which 

where an - M = -  r s i n  (T- f )  , p 

- 1  
e cos f - 7 e cos (F - 2f) 

an 
N =  

(1 - e ). 

- 2 c o s  (F- f )  + 21 . 
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The expressions M and N remain the same for the perturbations of all orders. They are to be de- 
veloped into a double Fourier series with respect to the mean anomaly 1 and with respect to the 
auxiliary mean anomaly i , associated with the auxiliary true anomaly T .  After the integration is 
performed, i is replaced by 1 .  

We have for the undisturbed ellipse 

[ i s i n f d l  = - ~ $ ( c o s f + ~ e c o s 2 f  l i  . 

Putting 

s = 1 (W - 2 ~ )  dt 

and taking Equations 21, 24, 25, and 26 into account, we deduce 

and, after some easy transformations, 

where 

The formulas for the computation of E ,  7 ,  and 5 become 

nae s i n  f 
5 = r u +  s ,  

8 
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where C i s  the standard expression 

na + -. R - FFr sin [T - f )  d t  . 

The expressions for A , B, and c as given here are reducible to the form given in the author's 
previous article. The present form, however, facilitates the comparison with the perturbations 
already computed by Hill 's method (Reference 5) i f  the substitution 

r 2  df 

a2 n- 
d t  = - 

is made. 

DETERMINATION OF CONSTANTS OF INTEGRATION 

We consider here the determination of constants of integration for the case when the elements 
are osculating at the epoch t = 0 and for the case when they are mean. If the elements a r e  os- 
culating, then we have 

(8Y)o  = 0 , (g) = 0 ,  
0 

(33) 

where the zero subscript designates the value of the expression at the epoch. From Equation 33 
we deduce 

uo = 0 ,  wo = 0 ,  (g) = 0 I 

0 

Taking Equation 21 into account, we obtain 
r 1 

Differentiating Equation 24 and considering the equations 

so = 0 .  (34) 

d r  s i n  f 
X G C O S f  = - -  , p 
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AL cos f + e 
dl a s i n f  = + 

' 

we deduce from Equation 34: 

r0 rO 
.t K, 7 COS f ,  + K, a s i n  f ,  = -A,  - 2K, , 

s i n  f ,  cos f ,  + e 
= -A,,' , 

where we put 

From these last equations we obtain 

cos f ,  + e A,' r o  
K ,  = - (A, + 2K3) t ~ - 

1 - e' 

s i n  f ,  A,' ro  
(A0 + x3) - ~ -  

1 - P a cos f o  . 
K,  = -~ 

, .  
In a similar way we deduce 

CO' r o  K, = - c, t-- p a ' i n f o  7 

cos f ,  + e 

1 - e' 

CO' r o  K, = - c, t-- p a ' i n f o  7 

cos f ,  + e 

1 - e' 

s i n  f ,  CO' ro 
1 - co Kts = - -  

and, putting t 0 in Equation 27, we deduce the following value for K,: 

K, = + 

1 1 K , +  - e* r t  
a2 2 cos f ,  + ij e + 2 e cos 2 f 0 )  - Bo . 

n -i 
The mean elements can be defined in several ways. We accept here the following definition. 

The elements a re  mean if:  

1. The perturbations of the true longitude A with respect to the orbit plane defihed by these 
elements do not contain the terms of the form 

K O ,  K t ,  K(') cos 1 ,  and K ( 5 )  s i n  1 .  (36) 

10 



2. The expression for the "third coordinate" 5 does not contain the terms of the form 

K ( = )  COS Z, K ( ~ )  sin z . 

We have 

1 (iy cos mf = 3 ct*m + c ;*m cos 1 + C;'m cos 2 1  + . * e  , 

where 

and XFm are Hansen's coefficients. 

Let us start with the determination of constants of integration in the perturbations of the 
first order. Perturbations of the first order in the true longitude are given by the expression d r ,  

where7 = q1 , and consequently the terms of the form 36 must be absent in the expression 

7 3 a '  
= ~ ( 7 )  ( - K 3  + e K l )  n t  

n r  

We have to separate the terms of the form 36 in the development of (a'/r')B: 

The condition for absence of the constant term in Equation 37 leads to 

(37) 

(37') 



In a similar way we deduce 

3 + - c - 2 . 0  2* 0 (-K3 + e K , )  + Po = 0 

Separating in C the terms with the argument I ,  

C = c1 COS 1 + s, s in  1 + . 

we obtain, taking Equation 31 into account, 

K 5 C t v 1  + c 1  = 0 , 

K, SI1-’ f s 1  = 0 . 

(42) 

(43 ) 

In the planetary case the solutions of Equations 38 through 43 can be found without any diffi- 
culty, because the coefficients of only one unknown in each equation a r e  not small. The coefficients 
cy” can be computed either by using the classical analytical expressions, by Cayley’s tables 
(Reference 6), or  by means of harmonic analysis. The latter procedure is preferable if the ec- 
centricity is not very small. 

Determination of constants of integration in higher order perturbations requires some addi- 
tional considerations, Let r 1 ,  r 2 ,  - .  * be the perturbations in the radius vector r and A , ,  A , ,  * .  . 
be the perturbations in the true longitude A of the first, second, etc. orders. From 

and substituting 
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we obtain 

Consequently, 

or, taking Equation 30 into account, 

x, = I l F  $ (s, - 5 ,  sl) , 

where S, corresponds to the first and S, to the second order perturbations. A s  we see, in 
the determination of the constants of integration of the second order in the case of mean elements 
a correction term -5 ,  S, must be added to B,. For the perturbation of the third order a similar 
correction term will depend on e l ,  S, , E 2 ,  S,. 

CONCLUSION 

A revival of the general interest in planetary theories can be observed in our time. Several 
scientific institutions are dedicating their time and efforts to the astronomical solution of the 
planetary problem. The results by Brouwer (Reference 7), Gontkovskaya (Reference 8), and 
Danby (Reference 9) must especially be mentioned. A considerable amount of work on the theo- 
retical exposition as well as on programming also has been done at Goddard Space Flight Center. 
In the present article we suggest a new scheme which is convenient for computing the perturba- 
tions of the first  as well as higher orders. 

The determination of constants of integration in the case of both the osculating and the mean 
elements is a straightforward process in the proposed scheme. An important feature of the scheme 
is that the squares of small divisors, as caused by the commensurability of mean motions, are 
introduced by integration of only one expression, namely w - 2u. The short and the long period 
terms containing the squares of small divisors constitute a significant part  in the perturbations 
E., 7 7 ,  5. The existence of such a direct way of separating these terms from the remaining per- 
turbations constitutes a significant part of a planetary theory. The development here is kept in 
the form which facilitates comparison with the results obtained on the basis of the classical form 
of Hill's theory, if  necessary. 
(Manuscript Received April 8 ,  1964) 
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Appendix A 

Notations 

a 

E 

e 

f 

I 

k 

1 

m 

m’ 

undisturbed semimajor axis of planet m 

base of natural logarithms 

undisturbed eccentricity of planet m 

undisturbed true anomaly of planet m 

idemfactor 

Gaussian constant 

undisturbed mean anomaly of planet m 

mass of disturbed planet; the mass of the sun is taken as unity 

mass  of disturbing planet 

P n a3/2 undisturbed mean motion of planet m 

r 

+ 
r 

- 1  

-, 
‘U 

+ 
r + 8; 

;’ + 87’ 

a ( 1  - e ’ )  

unit vector normal to undisturbed orbit plane of planet m 

1 ? 1  

undisturbed position vector of planet m 

undisturbed position vector of planet m’ 

unit vector in direction of 7 

perturbations of kth order in position vector of planet m 

perturbations of k t h  order in position vector of planet m‘ 

disturbed position vector of planet m 

disturbed position vector of planet m ’  
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undisturbed velocity of planet m 

del-operator with respect to ; 

del-operator with respect to ;’ 

perturbations in position vector of planet m 

perturbations in position vector of planet m’ 

k 2 ( l + m )  

r - r  ‘, ‘ 

angular velocity of rotation of frame (T, ’ix ;, Ii) 

n(;, ; I )  = m’ ( F - ~ )  1 ?my’ - main part  of disturbing function 

16 NASA-Langley, 1964 
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